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Abstrad. A long-standing puzzle in the relaxation of glasses has been the upward curvature of 
the imaginary pan of the dielectcic constant on the high-frequency side of the primary relaxation 
peak. Similarly, a puzzle of several years’ standing has been the ‘universal scaling’ of the 
dielectric constant observed in dipole glasses; what has been difficult to explain is the fact that the 
departure from the apparent Kohlrausch-Williams-Watts (KWW) form for the relaxation follows 
the same genenl scaling function as the Kww portion near the relaxation peak. This is shown 
to be easily interpretable in terms of a crossover from independent ‘hopping’ transitions at high 
frequencies to correlated hopping transitions near the peak, provided the crossover frequency and 
high-frequency approximate power are both related to the peak frequency and KW exponent 
respectively. Such a specific derivation has already been accomplished in electronic and ionic 
hopping conduction systems; its analogue for dipole glasses is consistent with the observed 
scaling behaviour. 

1. Introduction 

Probably as many different theoretical treatments of dielectric relaxation in glasses exist 
as there are phenomenologies to report the datat. While many arguments can be made in 
favour of one or other of the many theories, such a discussion will not be attempted in this 
paper in any depth. The same applies to the various phenomenologies. The purpose of this 
paper is to establish whether the results [1-5] from percolation-theoretical treatments of the 
AC conductivity of glasses are compatible with the particular scaling representation reported 
by Dixon and co-workers [6] (and also more recently [7]), and described as universal. The 
general percolation-theoretical treatment will be seen to reproduce Dixon scaling very well, 
including the upward curvature at higher frequencies, which results in a deviation from the 
Kohlrausch-Williams-Watts (KWW) [8-101 phenomenology. It  is a fundamental property 
of percolation-based theories that (provided the distribution of elementary relaxation times 
has only one width parameter, i.e. provided the distribution is composed of only one 

t Instead of offering a list of approaches considered, some theories that are related to the present work will be 
mentioned in the course of the paper. Some mention of the various phenomenologies is appropriate right at 
the onset, because controversies over the actual form of the conductivity are reported by referring to the different 
phenomenologies to which the data are supposed to conform. These include Kww, ‘stretched exponential’ relaxation 
functions. and in the conductivity, various approximate power laws which involve logarithmic deviations from 
linearity, vue power laws. sumr of power bws,  and so on. In fact, however, no phenomenology represents the 
data over the entire frequency range. It is an interesting fact that some people assume that such an event means 
that different porlions of the response curve are due to completely different mechanisms. a conclus~on which by 
no m m s  follows (as the data of Dixon and co-workers 161 considered here reveals). 
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peak) the frequency marking the onset of the importance of correlation effects is universally 
related to the frequency defining percolation. The former frequency will be seen here to 
be connected with the high-frequency deviation from response functions generated from 
KWW relaxation functions, while the latter frequency defines the loss peak. This universal 
relationship is reflected in the result of Dixon and co-workers 161, that a scaling form of the 
dielectric constant based on the peakfrequency also encompasses the high-frequency wing 
of the relaxation, although this wing may seem to he simply added on, i.e. an independent 
relaxation (and has, in fact, been interpreted thus [ll-131). 

The question of the high-frequency departure from typical KWW phenomenology is 
of fundamental importance to dielectric and other relaxation functions. Similar behaviour 
in the dielectric constant is observed in ionic [12] and electronic 1141 glasses, and even 
cluster compounds [I51 as well. The corresponding increase in the approximate power of 
the AC conductivity with frequency has been noted as a general tendency in amorphous 
systems [ 161. In ionic glasses attempts have been made to identify multiple relaxation 
processes [ 11,121, but the type of scaling relationship which is discussed here (as well 
as the Barton-Nakajima-Namikawa (BNN) [17-191 relation, and the scaling [15] of the 
approximate power of the AC conductivity with the DC conductivity) point to a fundamental 
framework which unites the description of the relaxation in all these systems, and at all 
frequencies from DC up almost to vibrational frequencies. When vibrational frequencies are 
approached, however, a conduction regime may be encountered with a quadratic frequency 
dependence [ZO]. The physical basis for the conduction in this regime appears not to be in 
the hoppinx type of relaxation considered here; it is noteworthy that this regime also does 
not appear in the Dixon [6] scaling formulation, in which it would appear as a region with 
zero slope. 

2. Model 

The present model (essentially a somewhat extended version of a previous model [21]) of a 
viscous fluid whose molecular units have a dipolar moment allows each molecule a limited 
number of orientations that are accessible to each other by classical excitations over a barrier 
(hopping). Relaxation times [16,21] of such processes are 

r . -  ,, - vphexp (kE;i) - . 
In this equation the barrier height is denoted by Eij,  uph i s  a vibrational frequency and kT 
is the product of the Boltzmann constant and the temperature. A continuum of orientations 
is accessible from each state without a hopping transition. The continuum of states is 
considered accessible over short times of order U$, and to contribute to the real past of the 
dielectric constant, Re&(W), at o is: uph. At lower frequencies. hopping transitions make 
an additional contribution to the dielectric constant. While some number of orientations 
are also possible, the requirement that a significant contribution to &(U) results (with the 
usual additional requirement that the relaxation time is on the order of the inverse of the 
frequency of the applied field) allows one to select two (or at most a very small number) 
of the possible orientations of a given molecule for consideration. One should keep in 
mind, however, that a more exact treatment may require explicit consideration of several 
distinct hopping transitions for each molecule. In the context of the present derivation, such 
a consideration could change primarily the normalization factor of the assumed distribution 
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of barrier heights (discussed later in this section), but would also affect the values of 
the dipole moments. The latter modification would show up only in the prefactor of the 
conductivity, and will not he further discussed. 

At high lrequencies, relaxation of the individual molecules is assumed to be independent 
while at lower frequencies the possibility of correlations is considered. The previous 
calculation [19] for dipole glasses/viscous liquids did not treat correlations; incorporation 
of this additional physics into the dielechic response is the objective of this work. 

The correlations assumed here are analogous to those [1,2] considered for ionic 
conducting gtasses and are treated within an analogous framework. Thus if w, is associated 
with critical (volume) percolation of the participating dipole relaxations, and the separation 
of the critical vansitions (with rates wrj % q.) is I ,  then the number of dipoles between the 
critical transitions that may be blocked from adjusting to the electric field is proportional 
to the ratio l /ro of the distance 1, between the critical transitions and the size of the 
molecules, ro. This factor represents an approximate enhancement of the conductivity at 
the peak frequency, since an additional number of molecules proportional to this number may 
reorient themselves at this frequency of the applied field. Choosing an enhancement factor 
proportional to l / ro  implies that the interaction effects are dominant along approximately ID 
paths connecting 'critically' slow transitions. Such tenuous paths are made important (in a 
self-consistent way) through the assumption of the relevance [21] of percolation theory [ZZ] 
to the conductivity. The critical transition rate, wc, is found by requiring the set of ail 
independent microscopic transitions with wij = r;' > wc to just percolate. It has been 
asserted that, under certain conditions, the relaxation peak frequency comesponds to this 
rate w,. What conditions define percolative transport? 

Percolative transport implies that on the rime scale required to establish sreaa'y state 
response, the number of environments seen by each molecule participating in the response 
is very small [23]. In other words, the molecules that respond more slowly are so much 
slower that the environments of those which can respond sufficiently rapidly may be 
regarded as approximately static. Of course this is only an approximation, but it is an 
approximation that gets better as the temperature is lowered. Since general features of 
percolative transport appear to be observed consistently below the so-called mode-coupling 
temperature, T, (such as decouplings of various relaxation properties, a crossover from 
timetemperature superposition to T-dependent peak widths with reduction in T and so on) 
the crossover for relevance of percolative transport has been presumed to be given by T,. 
Moreover, computer simulations 124,251 suggest that such a crossover should occur when 
transport properties have slowed by about four orders of magnitude, often noted [26] in the 
vicinity of T,. 

Consistent with percolation theory, the condition that defines the onset of correlations 
is also geomehic in origin; when the average cluster size of dipoles with relaxation times 
smaller than or equal to the inverse of the applied field is, say, two, then one may expect 
these dipoles to be unable to relax independently. In other words when, on the average,~an 
arbitray dipole with principal relaxation time r < w-' is a nearest neighbour of one other 
dipole, which satisfies the same rate condition, then it is not possible to treat (on the average) 
relaxations of such dipoles independently. At higher frequencies, the number of dipoles with 
7 < w-I is sufficiently small that the individual dipoles satisfying the rate condition are 
unlikely to be close to each other, allowing their relaxations to be treated independently. 
Finally, when the clusters of dipoles with microscopic relaxation times ~ i j  Q w;' just reach 
infinite size, critical percolation is reached, and w, % o, the relaxation peak frequency. 

First, assume that the differential probability. dF. of a given barrier height being within 
d E  of E is 
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This probability is normalized, i.e. 

The condition yielding the critical frequency, w, = vphexp(-Ep/kT), has been given [19] 
as 

where crc is a fraction for which the total volume associated with the transitions with barrier 
heights E < E, percolates. This number can be written as the quotient Z,/Z, where Z 
is the number of volumes (of comparable size to r i ,  the dipolar volume) neighbouring a 
given dipole that are accessible by hopping transitions, and 2, is the critical number of such 
volumes. An equation such as (4) implies a random association of microscopic transitions, 
at least on length scales smaller than the separation, 1, of the critical transitions, with 
relaxation times zc = w;' = vph --I exp(E,/kT). There is evidence [27] that dipolar liquids 
are inhomogeneous, at least over small length scales, so using notions from percolation 
theory will in principle yield transport properties in accord with experiment for w > ow 
(The fact that not all the volumes are completely independent of each other, or of the 
original dipolar position, means that the critical number of such volumes, Zc, will not be 
the same as in an uncorrelated problem, e.g. [25]). 

The most important correlations are assumed to be related to 'hard-core' repulsion, 
and to arise from the restriction of orientations available to a given molecule through the 
orientations of its nearest neighbours. In frequency-dependent response, the onset of these 
correlations is assumed to correspond to a frequency, w, for which exactly 112 = 116 of 
all the transitions have w,- > w .  Then, on the average, an individual volume will 'connect' 
with one other similar volume when a fraction 112 of the total microscopic transitions 
encounter barrier heights less than E,. In analogy with the previous equation, Ec is defined 
using 20 1, i.e. 

This energy value, E,, defines through WO = Vphexp(-E,/kT), the onset of correlated 
hopping (as the frequency is reduced) or, as the frequency is raised, the deviation from 
KWW phenomenology. 

20 and 2, may not be treated as independent parameters. Since the exact numerical 
values for this problem are unknown, values from other related problems [4,28] are 
employed (20 = 1; 2, = 2.7). Although subsequent research may demonstrate that different 
values are appropriate, the results of this calculation depend on log 2,. and the exact value 
chosen is relatively unimportant. Moreover, although numerical values of the frequencies 
wo and 0, are affected by the choice,,of 2,. the existence of the sort of scaling relationship 
that encompasses the deviation from KWW phenomenology depends only on the fact that 
the respective energies Ec and Ep are both proportional to the same energy, EO. (as long as 
the distribution of barrier heights has just a single peak). 
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3. Calculations 

The contribution to the current from a dipole that jumps back and forth over a barrier of 
height Ejj involving a change in dipole moment proportional to er0 (ro the linear size) 
is [21,29] 

where FO is the magnitude of the applied (harmonic) field and e is the electronic charge. 

states is given (in the pair approximation, e.g. [21,29]) by 
The conductivity of an independent set of molecules that can rotate between two discrete 

where the normalization (proportional to r r 3 )  involves the molecular volume, r i ,  because 
the function f is a probability. Such an equation is derived from assuming a superposition 
of independent Debye relaxations and involves the approximation that only those processes 
with relaxation times r Z% w-' contribute importantly to the real part of the conductivity. It 
is very important to keep in mind that this type of treatment traces the dominant relaxations 
at any frequency to well defined relaxations (associated with given molecules in specific 
environments). The approximation is accurate [30] as long as kT/Eo < 1/10, Thus the ratio 
kT/Eo may be treated in a self-consistent way as an expansion parameter. In the following 
an exponential [31-331 distribution of barrier heights is assumed; such a distribution leads 
to an exact power law behaviour (at high frequencies where the individual relaxations that 
contribute to u ( w )  are on the average widely separated, and may be considered independent 
of one another). It is, however, not assumed that an exponential distribution should be 
generally valid. This distribution is chosen for the convenience of further calculations, for 
which analytical results of the conductivity are indispensable: 

For the above distribution of barrier heights, the following result for u ( w )  is obtained in 
the pair approximation (7): 

with 

The absolute lower boundary of applicability of such a result, from the considerations of 
the previous section, is given by 
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where 

E, = E, - EolnZ.  (11) 

In the regime of frequencies between 00 and w,, at which the relevant volume percolates, 
the conductivity must be modified by a factor that describes the number of molecules whose 
reorientations are blocked until the molecule considered is able to reorient itself. Thus the 
pair conductivity that would describe a(w) in the absence of correlations is enhanced by the 
rearrangement of additional molecules, for which other reorientations become possible after 
the molecule considered which had r Fs: w-' could respond. The number of additional such 
molecules per critical transition is determined by the association of  molecules into clusters 
(taken here from percolation theory), and rises from near 0 at WO to roughly llro at wc. 
The net response is given by the pair response muNiplied by the number of such 'blocked' 
dipoles, since each makes a similar response. 

The lower limit of the conelated hopping regime is then given by 

where 

Z E, = E,,, - Eoln - 
ZC 

At the lower limit of this regime the conductivity is modified by the factor l /ro mentioned in 
the previous section: within this regime the exact calculation of the frequency dependence of 
u ( w )  is very difficult, even in more concrete electronic and ionic hopping models. However, 
since the observed conductivity very closely resembles a power law within this range of 
frequencies, and since it is relatively easy to calculate an average power for a@), this 
course of action is chosen here. To calculate an average power we must know wo, U, and 
the values of the conductivity at these two frequencies: (s) is then found by 

In this equation the ratios of wo/oc and o(oo)/u(w,) appear. The former ratio is given by 

To write the ratio of the conductivities we need 

and the enhancement factor [2,27] for U(%).  assumed to be 
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The form of this equation is general; it gives the ratio of the separations of all processes 
with r f 0 - l  to those with r % U - ' .  Now the value of the conductivity at W, is 

In contrast to (ionic and electronic) systems with an intrinsic DC conductivity, and which 
therefore have no obvious constraints on the zero-frequency dielectric constant, Res(O), 
dipole glasses/viscous liquids do have a constraint on Rec(0). Thus, dipoles that are 
blocked from reorienting themselves at a given frequency must reorient themselves at some 
lower frequency (corresponding to a later time, i.e. when the 'blocking' transition has 
proceeded), and the enhancement of the conductivity at low frequencies is associated with a 
reduction of the conductivity at some other frequency. The constraint is determined through 
application of Kramers-Kronig relations to u(o), because it is expressed on the condition 
on the static dielectric constant. The distribution chosen is assumed to be compatible with 
this constraint; this can be self-consistently incorporated into the values 2 and Z,, but is not 
attempted here. The purpose here is only a direct demonstration of the geometric nature of 
the condition defining the onset of correlated hopping at WO; unfortunately, it is not possible 
to describe an exact calculation of u(w). The result for (s) may now be wTitten 

kT kT InEolkT 
Eo 3Eo lnZ, ' 

SEE (s) = I - - - - 

In the previous treatment [21] of this problem, in which correlations in the relaxation were 
ignored, the low-frequency conductivity could be represented as 

Invoking the (somewhat sparse) evidence that dipolai liquids are homogeneous on length 
scales greater than about 3-5 intermolecular separations allows us to neglect the effects of 
correlations on greater length scales. Thus, the low-frequency conductivity may still be 
represented as quadratic in the frequency (subject to the condition on homogeneity), and 
(19) is adopted here as well. 

With regard to the low-frequency conductivity, however, it must be said that some 
systems [34] appear to follow the law U ( W )  o( a"', with m < 2. Whether such a result for 
the conductivity truly requires inhomogeneity on length scales larger than the separation 
of processes with critical rates, as claimed above, or whether collective relaxations (for 
example, Goldstone modes) can generate such a dependence without inhomogeneities is 
still unresolved and (to my knowledge) unaddressed. Since considerable controversy exists 
regarding the experimental results in this range of frequencies even in the systems considered 
by Dixon and co-workers [6] ,  this question is not further addressed here. In summary, neither 
theory nor experiment can resolve the situation at low frequencies. But the present state of 
percolation theoretical approaches is that stretching of the relaxation peak at low frequencies 
requires inhomogeneities over distances larger than those marking the separation of critical 
processes, while specific calculations of such effects have only been made in conducting 
glasses. 

In summary, one can represent the conductivity in the three separate frequency regimes 
as 
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In general, however, the following relationship may be valid: 

where s' and s are given in (10) and (18) respectively. 

4. Comparison with scaling 

The 'universal' scaling function is given in terms of the ratio of the width of the observed 
relaxation peak to the width of an ideal Debye relaxation peak. This width has been 
calculated to be [21] 

(with log log,,) assuming that the low-frequency conductivity is quadratic in the 
frequency. Here w, and w, are defined such that .?(U<) = E(O, = $E(OJ~) ,  and the subscript 
D means the Debye case. Generalization to values of the power p # 2 is elementary, but 
will not be considered here. The factor that actually appears in the scaling formulation is 
the inverse of w, i.e. 

(24) 
kT In Eo/kT) [ kT kT In Eo/kT]-' 

I + - + -  EO ~ E O  lnZ, 

It will be useful to represent w-l in the following rather complicated form for the purpose 
of calculating the slope of g(x) .  The ratios required will involve fractions with identical 
denominators (also, a ratio of natural logarithms may be represented as a ratio of logarithms 
to the base IO): 

kT 1 kT log(Eo/kT) 

x ( 1 + - + -  kT 1 log(Eo/kT))-' 
Eo 3 IOgZ, 

The product w-'[l + w-I] also appears: 

kT 210gEo/kT 1 kT logEo/kT 
w - ' [ l + w - 1 ] = 2  - + 3  - +2 - + -- [g (g)' ( E o )  IOgZ, 3 E o  IOgz, 
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It is also useful to write w-l( l  + w - l )  in this apparently complicated representation for 
the purpose of calculating slopes (which require taking quotients). In particular, the same 
denominator, D, will appear in both w-I and w-l(I + w - l ) :  

D =  ( I + - + -  kT 1 log(EO/kT))’ 
Eo 3 IOgZ, 

In [6] it was found that in all of the systems considered (which had no secondary 
relaxation peaks), and at all temperatures, the following scaling form of the imaginary part 
of the dielectric constant as a function of frequency, Im&(w), resulted in the collapse of all 
the experimental data onto a single c ine:  

This scaling function can obviously only be correct [21,35] if the conductivity at frequencies 
below the peak frequency (at wc) is quadratic in the frequency. While this point is quite 
controversial (see, for example, [7,35]), this is not the frequency range considered here. 
The present calculations are modifications of a calculation that predicted such a frequency 
dependence, but a different result can be obtained if (i) the system is inhomogeneous [36] 
on a scale larger than 1, and (ii) dynamic interaction effects [37,38] (i.e. correlated hopping) 
continue to be of importance at such low frequencies. It is not the purpose here to suggest 
that either of the two results for the low-frequency conductivity must necessarily follow. It 
is considerably safer to turn the argument around and say that one may use experimental 
results to determine the physics of a particular system, i.e. whether the above two conditions 
are met or not. In case the low-frequency conductivity of a given system is not quadratic, 
it is obvious that the scaling function of [6] must be~generalized to include the broadening 
of the peak on the low-frequency side as well. Again, however, such a condition on the 
low-frequency side of the peak is a property of larger-scale inhomogeneities; the presence, 
or lack of same, has no effect on the conductivity at higher frequencies, nor does it pertain 
to the geometric relationship defining the two frequencies and w,, which is the focus of 
this work. 

Using (26) for w - ’ ( l +  w - l )  yields 

kT log EolkT kT lOg(ZJ 
EO hzc + 6-) - 

Eo D 
+- 

for the right-hand side of (27) describing the Dixon scaling function [6]. Clearly, x(wc) = 0 
because of the ratio wc/wc in the logarithm. To calculate the left-hand side, we need first 
the hopping contribution to the static dielectric constant (from frequencies, w, such that 
0 < w < wph).  This result is found from 
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Equation (29) may be simplified as follows: 

A&(O) = -( 4%) + - 1 ) +?(- c(wg) 1 - -). 1 
WC 1 - s  1 - s  I-s 

Now the result for w-l log[Im(~(o)o~)/wAs(O)] can be written: 

Equation (32) may be evaluated as follows (approximating the denominator in the logarithm 
by its largest term, 1/(1 - s)): 

(33) 
2 log Eo/kT lOgZ, 4kT IogEolkT kT logZ, + 6-) - 

Eo D ' 
Ytwo) = -- ('+310gEo/kT + -- 3 EO logZ, 3 IogZ, 

From (17), (24) and (30), y(& is given by 

(34) 
+2-)- kT log 2, 

Eo D 

(with the same approximation for the denominator in the logarithm). 
The slope of g ( x )  between U, and WO is found easily: 

log Z, 2 kT log Eo/kT + -- Y (00) - Y (%I 
x ( o o ) - x ( w c )  =-(1+310gEo/kT 3 EO IogZ, 

logEo/kT Eo IogZ, Eo 

Eo 
m =  

log Zc +- kT log Eo/kT + 6kT)-' x (1+3 

1 kT logEo/kT -2"). 
3 Eo hgZ, Eo 

(35) 

To a good approximation the scaling function g(x)  = -x  for wc < w 6 W. This 
is observed experimentally [6]. However, the above formula shows a slight (positive) 
deviation from a slope of -1. In fact, this comes about because the Dixon scaling function 
is not represented by two straight lines that intersect at (0,O). Rather, the experimental 
results [6] and calculations both yield y(wJ somewhat less than zero. However, because 
of the curvature of g ( x )  near x = 0, the slope of the ( K w )  straight-line fit (over 2 4  
decades in frequency above the loss peak) is determined by extrapolating back through 
approximately the point (0,O). If we use y(oc) = 0, we find for the slope, m: 

+ 6%) log Z, 4 kT log Eo/kT 
m = -  1 + 3  + -- ( logEo/kT 3 Eo logZ, Eo 

log Zc +- kT log Eo/kT + q-' 
log EolkT Eo log 2, Eo 

x (1+3 
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This value of m also shows a slight deviation from a slope of -1, but in this case the 
deviation is negative (to third order in the expansion). Although we take the average value 
here, this demonstrates that a noticeable uncertainty in the calculation of the slope exists. 
The average value is given by 

A slight positive deviation from the value m = -1 results; the difference, however, is 
smaller than the uncertainty in the method to determine m . ~ ~  

In the vicinity of 00 the slope of log+) against logw increases gradually: 

How does this appear on the scaled axes? One might assume that the scaling procedure, 
which in practice amounted to subtracting 1 - i(kT/Eo) log(Eo/kT)/log(Z,) from the 
slope at lower frequencies, would have the same effect at higher frequencies, leading to 

" = -  ( I - - -  1 kTlogEo/kT), 
3 Eo IogZ, 

In fact, this is approximately true. This will be demonstrated later, but is important for the 
following discussion. 

From (29) and (33) it is seen that WO slides upward in x and downward in y. the 
dependence on the temperature being logarithmic, i.e. a slow variation (a decrease in T of 
one half only changes the value of 00 on the scaled axes by about 10%). To fourth order 
in the expansion, the downward 'sliding' of the left-hand side of the equation evaluated at 
00 is identical. 

The upward curvature of the relaxation is due to the increase in the power of the 
conductivity in the neighbourhood of 00 (through the gradual crossover to independent 
hopping). The 'sliding' out to higher frequencies on the scaled plot of would be 
consistent with a greater departure from m = -1, observed at lower frequencies. However, 
the calculated deviation from m = -1 seems to diminish as the temperature drops ((43) 
below). This is because in the region around 00. the crossover to pair hopping produces 
a gradual change in slope, in contrast to the simplification considered here. Thus, what is 
calculated here cannot describe the curvature of g(x)  very well in the neighbourhood of 
its deviation from the KWW fit. It is therefore important to check whether the experimental 
values for x ( w )  and y(w) at much higher frequencies are consistent with the theoretical 
results obtained. Note, however, that since both the change in slope and the position of the 
crossover depend on the ratio of the same energy (Eo)  to kT, the two effects are generally 
compatible with each other, and with the universal tendency for scaling. 

For w > 00 the approximate slope of the scaling function is calculated as follows: 

x ( 0 )  = w-'(I + w - ' )  log - +log - [ (3 (31, 
This may be rewritten as 

x ( w ) = x ( o g ) + x ( w o )  ( -- Iog1Zc :) log (:>. - (39) 
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Similarly 

Substituting: 

1 -' --I-kT/Eo 1 113 1 
y(w)  = hog( W (2) [1+ - 1 - -s  + (5) (- 1 -s' - -)] 1 - -s  

- I -kT/Eo 

(41) 

This result may now be simplified: 

After some algebra: 

This result should be compared with (37), from whence it can be seen that the slope is less 
negative at higher frequencies. 

Two specific points, ( x ,  y),  are now estimated. For the purpose of this calculation, Z, is 
chosen to be 2.7 (the same value used in electronic and ionic glasses) and EojkT is taken 
to be 10 (the minimum ratio for accuracy of percolation-based theories). Substitution yields 

X(OO)  = 1.7 ~ ( w o )  = -1.8 (44) 

in approximate accord with the scaling function (which bas m = -1 for 0 c x c 2, and in 
which y(w.) c 0). The second point chosen is x = 8 (at the upper frequency limit of the 
data reported). Using (39), one can solve for 

kT logo/oo 8 - 1.7 
EO IogZc 1.7 

-- - - 

and find 

1.8 1 
1.7 1 + 113 

y(O) = -1.8 - 6.3-- = -6.7 

(45) 

in very close agreement with the 'universal' scaling function 161. Although these last two 
examples do not constitute a proof that the theoretical approach yields the scaling function 
(since only one value of kT/Eo, and only one form of a barrier height distribution, has 
been investigated), they provide further evidence that percolation theoretical treatments are 
consistent with the Dixon scaling function 161. 

Finally, the approximate power of the frequency in u(o) obviously depends on the 
energy scale of the distribution that is relevant at w; if the frequency is high enough (and 
the system complex enough) so that another relaxation peak is involved, one should not 
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expect the scaling form to still hold, since the energy scale that appears in w is that of the 
portion of the distribution which involves the primary relaxation peak. Neverfheless, even 
in such situations, the scaling function of Dixon and co-workers [6] appears to be consistent 
with an envelope of curves in the vicinity of the secondary relaxation peak. While such a 
geometrical relationship between two of the relevant frequencies (excluding the secondary 
 relaxation^ peak) will still hold, and will still provide some constraints, an actual test of 
the validity of the present framework must be postponed until it is possible to perform 
numerical calculations. These will necessarily involve the conservation principle on the 
static dielectric constant referred to, and should probably also be compared with computer 
simulations of the relaxation using a combination of molecular dynamics (for short times, 
or large frequencies) and Monte Carlo methods (for long times, or small frequencies). The 
depth of such an investigation is well beyond the scope of the present paper. 

~ 

5. Discussion 

The relevance of the derivation here is primarily in the description of the high-frequency 
side of the primary dielectric relaxation peak. At low frequencies, the actual form of 
the relaxation is still in dispute [6,35]. The controversy revolves around the frequency 
dependence of the conductivity at frequencies below the primary relaxation peak frequency, 
o,. But this controversy is relevant to the applicability even above the peak frequency 
of the ‘universal’ scaling function for dielectric relaxation investigated here. Clearly, the 
Dixon [6]  scaling result requires a quadratic frequency dependence at low frequencies. 
Experimental evidence to the contrary exists [39] (even for the same systems investigated by 
Dixon and co-workers [6]), but has been subsequently disputed (and counter disputed) [35]. 
Compilations [34,37] of data from different systems suggest that many systems have a 
non-integral power dependence on the frequency at low frequencies, a behaviour also 
noted in electronic systems 1141 (where non-local relaxation is clearly relevant). But 
theoretical explanations of such behaviour seem to require spatial inhomogeneities on length 
scales larger than the separation of rate determining processes (here, roughly ( E 0 / k T ) 1 / 3 r ~ ,  
or for typical experimental conditions roughly 3r0). And some evidence exists [27] to 
suggest that dipolar liquids are homogeneous on such length scales (local dielectric probes, 
which average over 3-5 intermolecular distances yield the same relaxation functions as 
investigations on a macroscopic scale). 

In the approach of applying concepts from percolation theory to the dielectric relaxation 
of viscous dipolar liquids, the identification of the relaxation peak frequency, o,, as 
corresponding to percolation of the volume associated with microscopic transitions whose 
rates are faster than the peak frequency, and that of the departure from KWW phenomenology 
at 00 as a crossover to independent relaxation, seems to be in accord with theTniversal’ 
scaling noted in [6]. The slope of the scaling function in the neighbourhood of the peak, 
the crossover to a smaller (negative) slope at WO, the relationship of 00 to 00, as well as 
values of the scaling function at o,, 00 and in the high-frequency limit, are all in close 
accord with results from experiment. However, the effect on the scaling function due to 
a reduction in temperature is not precisely reproduced in the approximation of calculating 
slopes in two regions, and connecting the points with straight lines. Apart from the obvious 
problem of not representing the curvature of the scaling function g(x), there is an additional 
problem of slightly overestimating the peak width (because of the slight curvature between 
o, and 00. While this problem in itself is not of great importance, the overestimation 
is accentuated with a drop in temperature because the frequency 00 is found at slightly 

- 
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higher values of x in the scaled plot. So a greater portion of the curvature is included 
in the approximation finding the slope near the peak. This difficulty certainly contributes 
to the problem that the departure from KWW is reduced with a decrease in T, instead of 
remaining constant, as required for exact scaling. Unfortunately, without a precise analytical 
expression for the curvature of g(x) ,  a better approximation is not possible. But even 
in ‘traditional’ systems [4] with percolative transport, in which it is possible to write an 
expression combining cluster statistics with cluster relaxation times, the resulting equation 
defining the dominant cluster processes is a complex transcendental equation that cannot be 
analytically solved, and which could not be used to obtain an analytical expression for the 
width of the relaxation peak. Without such an analytical expression, it will only be possible 
to make an exact comparison with experiment through numerical resu!ts. 

Although only an exponential distribution has been tested directly in this calculation, 
the relationship between the slope of the frequencydependent dielectric constant near 
the peak, and that at higher frequencies, is still determined through the enhancement of 
the conductivity near the peak from correlations in the microscopic transitions. These 
correlations have a universal relationship to the relaxation function, which is expressed 
through the cluster statistics of percolation theory. That the high-frequency portion of the 
relaxation also scales with the peak region is evidence that the fundamental magnitude of the 
relaxation in both the high-frequency (independent-relaxation) regime and the low-frequency 
(collective-relaxation) regime is defined by the statistics of the individual microscopic 
processes. Thus the effects of correlations represent a ‘universal’ mdification of the 
independent relaxations, a modification that can be expressed as a renonnalization. 

A very interesting aspect of the Dixon scaling function [6] is that it is able to isolate 
different factors influencing the peak width, in particular, by showing that for any energy 
scale, i.e. distribution parameters, the relaxation data is collapsed onto a single curve. This 
apparent verification of the relationships between the peak width and the peak value will 
allow us to isolate any additional tanperature dependence of the peak width as due to a 
remperature dependence of the energy scale. 

If the treatment given here is valid, it is easy to generalize to powers of the low- 
frequency conductivity other than two and, in view of the concrete representation of &(U) 

in the various frequency regimes, a generalization of the Dixon scaling [6] could probably 
be proposed. However, even further care would be required in the selection of a distribution 
of macroscopic rates in order that the condition on the conservation of the static dielectric 
constant be maintained (in view of the continued relevance of correlations in the relaxation 
at frequencies below wc). Such a development would be beyond the scope of this work. 

Here we wished only to examine the consequences and implications of the scaling 
properties of Im&(w) at frequencies where the results typically deviate from KWW 
phenomenology. The method applied to analyse the conductivity, and hence Im&(w), 
was percolation-theoretical in nature, and was adopted in part because of the experimental 
similarities of dielectric relaxation in a variety of systems, ranging from electronic glassy 
systems through ionic conducting and dipole glasses to polymers and solutions. In some of 
these systems the relevance of percolation theory to transport has been clearly established, 
while in others considerable evidence already exists to suggest its relevance. The upward 
curvature of h & ( w )  studied here is common to all these systems, and is proposed to have 
the same origin in a crossover from pair hopping to multiple hopping (in highly correlated 
systems, sequentially correlated hopping). While the actual derivation of U(@) in this 
regime is not complete when the enhancement of u ( w )  compared with pair hopping is due 
to correlations, a comprehensive treatment is available [28], even for this regime, in certain 
electronic conducting systems. If the analogy noted here turns out to be quantitative and 
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universal, then a general framework for the calculation of dielectric relaxation in amorphous 
systems has been found. 

6. Conclusions 

The model of relaxation assumes that the individual dipolar molecules relax independently 
at high frequencies, and that correlations set in at a frequency, wo. when the average number 
of dipoles responding as rapidly, or more rapidly than W. is high enough so that the typical 
‘responding’ dipole is the nearest neighbour to one other such dipole. The peak frequency, 
w,, is then defined by the condition that all dipolar transitions with individual transition 
rates faster than or equal to w, occupy a percolating volume. The conditions defining 00 
and 0, relate these two frequencies to each other, and hence the departure from apparent 
KWW relaxation (at high frequencies) is related to the relaxation in the vicinity of the peak 
(as long as the distribution of individual barrier heights as only one fundamental energy 
scale). 

The scaling form for the imaginary part of the dielectric constant as a function of 
frequency, Im&(o), which has been found to be consistent with a number of experiments by 
the University of Chicago group [6,7,35], has been shown to be consistent with a theoretical 
treatment of the dielectric relaxation in dipole liquids which is analogous to percolation 
treatments of electronic and ionic conducting glasses. Some details remain to be checked, 
but the slight deviation from the point ( x ,  y )  = (0, 0), the slope of approximately -1 
between (0,O) and (2, -2),  as well as the slight increase in slope at higher values of the 
ordinate, are all obtained from the same theoretically derived form for the conductivity, 
U(@). 
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